Greatest Integer Function

Definition of Greatest Integer Function

  • Greatest Integer Function is a step function written as f(x) = [x], where f(x) is the greatest integer less than or equal to x.
  • In other words, a greatest integer function rounds any number down to the nearest integer.

Examples of Greatest Integer Function

  • The greatest integer less than or equal to the number [5.3] is [5].
  • The greatest integer less than or equal to the number [- 5.3] is [- 5].
 

Solved Example on Greatest Integer Function

If [x] represents the greatest integer function, then evaluate .

Choices:

A. 35

B. 17

C. 18

D. 15

Correct Answer: D

Solution:

Step 1: Let x = 2 - h, then as and as , 2 - h = 1.

Step 2:

                                                             

Related Terms for Greatest Integer Function

  • Step Function
  • Integer

                                         

Additional Links for Greatest Integer Function